* Decision Tree 1. 의사결정나무(Decision Tree)는 그 시각적인 구조 덕분에 depth가 크지 않는 한 해석이 용이한, 간단한(simple) 모델에 해당합니다. 다른 간단 모델인 Linear Regression, Logistic Regression은 feature와 target이 선형적 관계일 때 통하는 방법인 반면, 의사결정나무는 비선형적인 관계에서도 통하는 방법, 앙상블이 의사결정나무 기반 2. 목적이 분류(Classification)일 때에는 불순도 지표로 Gini 계수 및 엔트로피를 이용하고, 목적이 회귀(Regression)일 때에는 MSE(Mean Square Error) 등을 이용해서 분산을 감소시키는 방향으로 노드를 째게 됩니다. 이 과정에서, 불순도를 가장 크게 감..