일반 선형 확률 과정(General Linear Process) 일반 선형 확률 과정이란 시계열 데이터가 가우시안 백색잡음의 현재값과 과거값의 선형조합 - 가우시안 노이즈 : 정규분포를 갖는 잡음, 일반적인 잡음으로 갑자기 튀는 잡음이 아님 - e_t : 잡음의 현재값, e_t-1 : 잡음의 과거 값 , w : 특정한 비율 결국 잡음의 현재값과 과거값에 특정비율을 곱한 것들의 합, 변수는 서로 독립이며 정규분포 기준으로 평균이 0이고분산이 특정한 범위에 있음, weight값의 제곱의 합이 무한대 보다 작다 -> 제곱합을 무한대로 더해서 무한대보다 작으려면1보다 작아야함(1미만을 제곱해서 무한대로 더하면 무한대보다 작기 때문)결국 어떠한 타임포인트 던지 다 쪼개서 작은 값으로 백색잡음에 비율(웨이트)을 곱..