자료구조 알고리즘

시간복잡도

robin0309 2020. 4. 10. 16:57

알고리즘 복잡도 계산이 필요한 이유

하나의 문제를 푸는 알고리즘은 다양할 수 있음

  • 정수의 절대값 구하기
    • 1, -1 ->> 1
    • 방법1: 정수값을 제곱한 값에 다시 루트를 씌우기
    • 방법2: 정수가 음수인지 확인해서, 음수일 때만, -1을 곱하기
    • 다양한 알고리즘 중 어느 알고리즘이 더 좋은지를 분석하기 위해, 복잡도를 정의하고 계산함

 

 

2. 알고리즘 복잡도 계산 항목

  1. 시간 복잡도: 알고리즘 실행 속도
  2. 공간 복잡도: 알고리즘이 사용하는 메모리 사이즈

가장 중요한 시간 복잡도를 꼭 이해하고 계산할 수 있어야 함

 

알고리즘 성능 표기법

  • Big O (빅-오) 표기법: O(N)

    • 알고리즘 최악의 실행 시간을 표기
    • 가장 많이/일반적으로 사용함
    • 아무리 최악의 상황이라도, 이정도의 성능은 보장한다는 의미이기 때문
  • Ω (오메가) 표기법: Ω(N)

    • 오메가 표기법은 알고리즘 최상의 실행 시간을 표기
  • Θ (세타) 표기법: Θ(N)

    • 오메가 표기법은 알고리즘 평균 실행 시간을 표기

시간 복잡도 계산은 반복문이 핵심 요소임을 인지하고, 계산 표기는 최상, 평균, 최악 중, 최악의 시간인 Big-O 표기법을 중심으로 익히면 됨

 

 

 

 







 

 

 

 

 

어느알고리즘이 성능이 좋을까요?

 

 

반응형

'자료구조 알고리즘' 카테고리의 다른 글

이진 트리-binary Tree  (0) 2020.04.28
Hash Table- 해쉬 테이블  (0) 2020.04.10
Linked List -링크드 리스트  (0) 2020.04.09
Stack- 스택  (0) 2020.04.08
QUEUE - 큐  (0) 2020.04.08
반응형