알고리즘 복잡도 계산이 필요한 이유
하나의 문제를 푸는 알고리즘은 다양할 수 있음
- 정수의 절대값 구하기
- 1, -1 ->> 1
- 방법1: 정수값을 제곱한 값에 다시 루트를 씌우기
- 방법2: 정수가 음수인지 확인해서, 음수일 때만, -1을 곱하기
- 다양한 알고리즘 중 어느 알고리즘이 더 좋은지를 분석하기 위해, 복잡도를 정의하고 계산함
2. 알고리즘 복잡도 계산 항목
- 시간 복잡도: 알고리즘 실행 속도
- 공간 복잡도: 알고리즘이 사용하는 메모리 사이즈
가장 중요한 시간 복잡도를 꼭 이해하고 계산할 수 있어야 함
알고리즘 성능 표기법
-
Big O (빅-오) 표기법: O(N)
- 알고리즘 최악의 실행 시간을 표기
- 가장 많이/일반적으로 사용함
- 아무리 최악의 상황이라도, 이정도의 성능은 보장한다는 의미이기 때문
-
Ω (오메가) 표기법: Ω(N)
- 오메가 표기법은 알고리즘 최상의 실행 시간을 표기
-
Θ (세타) 표기법: Θ(N)
- 오메가 표기법은 알고리즘 평균 실행 시간을 표기
시간 복잡도 계산은 반복문이 핵심 요소임을 인지하고, 계산 표기는 최상, 평균, 최악 중, 최악의 시간인 Big-O 표기법을 중심으로 익히면 됨
어느알고리즘이 성능이 좋을까요?
반응형
'자료구조 알고리즘' 카테고리의 다른 글
이진 트리-binary Tree (0) | 2020.04.28 |
---|---|
Hash Table- 해쉬 테이블 (0) | 2020.04.10 |
Linked List -링크드 리스트 (0) | 2020.04.09 |
Stack- 스택 (0) | 2020.04.08 |
QUEUE - 큐 (0) | 2020.04.08 |